Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Virol ; 97(4): e0012823, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2264675

ABSTRACT

Coronavirus membrane protein is a major component of the viral envelope and plays a central role in the viral life cycle. Studies of the coronavirus membrane protein (M) have mainly focused on its role in viral assembly and budding, but whether M protein is involved in the initial stage of viral replication remains unclear. In this study, eight proteins in transmissible gastroenteritis virus (TGEV)-infected cells coimmunoprecipitated with monoclonal antibodies (MAb) against M protein in PK-15 cells, heat shock cognate protein 70 (HSC70), and clathrin were identified by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF MS). Further studies demonstrated that HSC70 and TGEV M colocalized on the cell surface in early stages of TGEV infection; specifically, HSC70 bound M protein through its substrate-binding domain (SBD) and preincubation of TGEV with anti-M serum to block the interaction of M and HSC70 reduced the internalization of TGEV, thus demonstrating that the M-HSC70 interaction mediates the internalization of TGEV. Remarkably, the process of internalization was dependent on clathrin-mediated endocytosis (CME) in PK-15 cells. Furthermore, inhibition of the ATPase activity of HSC70 reduced the efficiency of CME. Collectively, our results indicated that HSC70 is a newly identified host factor involved in TGEV infection. Taken together, our findings clearly illustrate a novel role for TGEV M protein in the viral life cycle and present a unique strategy used by HSC70 to promote TGEV infection in which the interaction with M protein directs viral internalization. These studies provide new insights into the life cycle of coronaviruses. IMPORTANCE TGEV is the causative agent of porcine diarrhea, a viral disease that economically affects the pig industry in many countries. However, the molecular mechanisms underlying viral replication remain incompletely understood. Here, we provide evidence of a previously undescribed role of M protein in viral replication during early stages. We also identified HSC70 as a new host factor affecting TGEV infection. We demonstrate that the interaction between M and HSC70 directs TGEV internalization in a manner dependent on CME, thus revealing a novel mechanism for TGEV replication. We believe that this study may change our understanding of the first steps of infection of cells with coronavirus. This study should facilitate the development of anti-TGEV therapeutic agents by targeting the host factors and may provide a new strategy for the control of porcine diarrhea.


Subject(s)
Clathrin , Coronavirus M Proteins , Endocytosis , HSC70 Heat-Shock Proteins , Transmissible gastroenteritis virus , Virus Internalization , Transmissible gastroenteritis virus/physiology , Clathrin/metabolism , Coronavirus M Proteins/metabolism , Cell Line , Humans , Animals , Virus Replication
2.
Animals (Basel) ; 12(21)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2089981

ABSTRACT

Swine enteric disease is the predominant cause of morbidity and mortality, and viral species involved in swine enteric disease include rotaviruses and coronaviruses, among others. Awareness of the circulating porcine rotavirus group C (PoRVC) in pig herds is critical to evaluate the potential impact of infection. At present, due to the lack of disease awareness and molecular diagnostic means, the research on RVC infection in China is not well-studied. In this study, diarrhea samples collected from pig farms were detected positive for RVC by PCR, and the full-length RVC was not previously reported for Chinese pig farms. This rotavirus strain was designated as RVC/Pig/CHN/JS02/2018/G6P6. A natural recombination event was observed with breakpoints at nucleotides (nt) 2509 to 2748 of the VP2 gene. Phylogenetic analysis based on nsp1 revealed that a new branch A10 formed. Collectively, our data suggest a potentially novel gene recombination event of RVC in the VP2 gene. These findings provide a new insight into the evolution of the rotavirus.

SELECTION OF CITATIONS
SEARCH DETAIL